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Abstract
Trapped ions are among the most promising platforms for practical quantum com-
puting (QC). Scaling trapped-ion quantum processors to large sizes while simul-
taneously mitigating decoherence and control errors remains a major challenge on
the path to fault-tolerant QC, as noise and fluctuations in experimental parameters
inevitably become more pronounced with increasing system size. We review various
noise-resilient schemes for entangling gates that build upon and extend the Mølmer-
Sørensen (MS) gate, addressing different sources of infidelity. Beginning with a
categorization of error mechanisms, we discuss four types of entangling gates, in-
cluding the MS gate, its polychromatic variants, and gates specifically designed for
general noise resilience and amplitude noise suppression.
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1.1 Introduction
Constructing a quantum processor capable of tackling highly complex real-world
problems necessitates not only a large-scale qubit system, but also precise and reli-
able gate operations [1]. The trapped-ion system, where ions are confined in radio-
frequency (RF) Paul traps [2] and manipulated precisely using electromagnetic fields,
stands out as one of the most promising systems for realizing such a quantum pro-
cessor. In this system, ions serve as qubits, with carefully selected internal states
representing |0〉 and |1〉, while entanglement is achieved by using shared vibrational
modes as a quantum bus. Up to now, on trapped ion platforms, single-qubit gates [3,
4], two-qubit gates [5–7], and qubit state preparation and readout [8] have all been
performed with fidelities exceeding that required for fault-tolerant quantum comput-
ing (QC) using high-threshold quantum error correction codes [9]. However, despite
their promising capabilities, significant challenges remain in the pursuit of a prac-
tical quantum processor. Chief among these is scaling up the trapped-ion systems
while maintaining the ability to individually control and measure them with high
fidelity.

As systems scale towards large quantum processors, the level of noise and fluc-
tuations in experimental parameters becomes increasingly significant. For instance,
many proposed trapped-ion quantum processors will require ions to be confined
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near the surface of a microfabricated chip [10–13], where voltage fluctuations in the
electrodes induce motional heating and dephasing, posing challenges to maintaining
coherence and gate fidelity.

Thus, the development of more robust gate operations is essential—ones that not
only achieve low error rates under ideal conditions, but are also resilient in many-ion
systems operating within realistic experimental environments.

In addition, achieving universal QC requires the implementation of a universal
set of quantum gates, which consists of arbitrary single-qubit rotations and at least
one kind of entangling two-qubit gates [14]. Among various two-qubit gates, the
Mølmer-Sørensen (MS) gate has emerged as a leading candidate in trapped-ion QC
due to its intrinsic ability to generate high-fidelity entanglement across multiple
qubits [15, 16].

Thus, in this review, we will focus on various robust control schemes that build
upon and extend the MS gate.

1.2 The Errors Causing Infidelity
The fidelity measuring the overlap between the ideal and the actual operation is
defined as

F = 〈ψideal|ρactual|ψideal〉, (1.1)

where |ψideal〉 is the target state and ρactual is the state actually produced.
Then the infidelity is simply given by

I = 1− F, (1.2)

which quantifies how much a real quantum operation deviates from its ideal, error-
free version. It encapsulates all sources of errors and their cumulative effects.

To achieve high-fidelity gate operations, it is crucial to identify the factors con-
tributing to infidelity, allowing for targeted mitigation strategies. Here, based on
the first principle, I introduce a hierarchical categorization of errors in the MS gate,
organized into a first-level, second-level, and third-level structure. By their physi-
cal nature, the gate errors can be broadly categorized into coherent and incoherent
errors. Coherent errors are those manifest as systematic, deterministic deviations
in the unitary evolution of the system, while incoherent errors arise from stochastic
processes that cause irreversible loss of quantum information.

1.2.1 Coherent Errors
As shown in Fig. 1.1, coherent errors are classified into systematic errors and deter-
ministic classical control errors. Systematic errors are inherent to the system due to
imperfect modeling or unwanted couplings, and they can be explicitly subdivided
into theoretical approximation errors and crosstalk.

In the context of MS gate, the common analytical approximation errors arise
from four sources: the effective Hamiltonian approximation, the Lamb-Dicke ap-
proximation (where the Lamb-Dicke parameter η � 1), the rotating wave approxi-
mation (RWA), and the truncation of the Magnus expansion. When the gate speed
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Figure 1.1: A hierarchical tree of coherent errors.

becomes too fast, off-resonant terms contribute non-negligibly, causing the RWA
to break down, which in turn limits the achievable gate speed. Moreover, in some
cases the system operates beyond the Lamb-Dicke regime—particularly when strong
ion-motion interactions or higher motional states are involved. In such cases, the
assumption of weak laser-ion coupling is no longer valid.

Crosstalk between ions[17], mainly the undesired coupling between qubits and
non-targeted motional modes, will amplifies noise sensitivity. It often becomes sig-
nificant in many-ion systems with a complex multi-mode structure. This arises
because the coupling strengths corresponding to different vibrational modes become
comparable in magnitude and vary across different ions in the chain. In such systems,
selectively driving a single mode unavoidably triggers higher-order phonon exchange
processes, inadvertently coupling non-targeted spectator modes to the qubit states.

As for deterministic classical control errors, they often consist of inaccurate pulse
shaping leading to phase and amplitude errors, and parameter calibration errors
including fixed miscalibration of pulse durations, amplitudes, or detunings.

Thus, coherent errors are typically systematic and, in many cases, can be cor-
rected with proper calibration or optimized pulse design.

1.2.2 Incoherent Errors
Similarly, as shown in Fig. 1.2, within the first-level classification of incoherent errors,
decoherence effects and stochastic classical control errors are further categorized at
the second level. This kind of errors arise from the environment or random control
fluctuations, often setting a fundamental limit on gate fidelity.

The discussion of decoherence errors can be categorized into two distinct aspects:
decoherence of the qubit state and decoherence of the motional state.

The qubit decoherence is characterized by two fundamental timescales: T1, the
energy relaxation time, and T2, the phase coherence time. Energy relaxation results
from coupling between the qubit and its environment, leading to population decay
between the ground and excited states. For optical qubits, spontaneous photon
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Figure 1.2: A hierarchical tree of incoherent errors.

emission and thermalization contribute to energy loss, whereas for hyperfine qubits,
T1 is effectively infinite on typical gate timescales due to the absence of spontaneous
decay. Phase decoherence arises from fluctuations in the relative phase between
the qubit’s basis states due to environmental noise. The dominant physical sources
include magnetic field fluctuations and laser phase noise. Basically, the decoherence
of the qubit state for trapped ion platform is negligible due to its sufficient long
internal-state coherence time.

In contrast, the decoherence of motional mode can severely impact the overall
gate performance. This decoherence arises from two primary mechanisms: motional
heating and motional dephasing. Motional heating occurs when the ion’s motional
state absorbs energy from environmental noise, leading to an increase in the average
phonon number. The dominant sources include fluctuations in the trapping poten-
tial, ambient stray electric fields, and imperfections in the trap electrodes or power
supplies. Motional dephasing is the loss of phase coherence in the motional state
caused by variations in the RF drive, slow drifts or noise in control voltages, and
mechanical vibrations or acoustic noise.

Stochastic classical control errors come from random fluctuations in control pa-
rameters, including amplitude and phase instabilities. These errors manifest as
fluctuations in the intensity of control fields and phase jitter in laser or microwave
fields.

To reiterate, rather than pursuing high fidelity by striving for ideal
experimental conditions or minimizing external noise sources, the liter-
ature review discusses various gate control schemes that mitigate the
sensitivity of gate performance to noise and experimental imperfections.
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Before the MS gate was proposed, the dominant source of quantum gate infi-
delity in trapped-ion QC architectures stemmed from the decoherence of quantum
states, which occurred due to interactions between the environment and the quan-
tum channel responsible for mediating logic operations between qubits [18].

In 1999, Mølmer and Sørensen introduced a quantum logic gate based on mo-
tional excitations that exhibits intrinsic resilience to such environmental interac-
tions. Their scheme realizes a controlled-phase gate that does not require the ions
to be prepared in the motional ground state [15], since the internal and motional
degrees of freedom are completely disentangled for all phonon number states n.
An additional feature of the MS interaction is its ability to generate entanglement
among multiple ions using only globally applied laser fields. Unlike gate schemes
that require individual addressing of ions with tightly focused laser beams, the MS
interaction simplifies experimental implementation while maintaining high-fidelity
entanglement generation.

2.1 The Monochromatic Scheme
In the monochromatic scheme, similar to the trapped-ion proposal by Cirac and
Zoller [18], each ion is addressed with a single laser, but quantum logic gates are
implemented by employing off-resonant laser pulses to mediate two-ion interactions.
Rather than directly driving transitions between internal states, their scheme lever-
ages a detuned virtual excitation of vibrational sidebands to achieve an effective
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coupling between qubits. Specifically, as shown in Fig. 2.1(a), the laser applied to
the first ion is detuned close to the upper motional sideband, meaning its frequency
is near resonance with a transition that simultaneously excites both the internal and
vibrational degrees of freedom of the ion. The laser applied to the second ion is set
to a detuning equal in magnitude but opposite in sign to that of the first laser.

Figure 2.1: Schematic diagram for energy levels and laser drivings.

This configuration establishes an effective coupling between the states |ggn〉 and
|een〉, where g and e denote the internal states of the ions and n represents the
quantum number of the relevant motional mode. The detuning is chosen to be
sufficiently large so that the intermediate states |egn + 1〉 and |gen − 1〉 remain
unpopulated throughout the gate operation.

This ion-trapped system is described by:

H = H0 +Hint

H0 = h̄ν
(
a†a+ 1/2

)
+ h̄ωeg

∑
i

σzi/2

Hint =
∑
i

h̄Ωi

2

(
σ+ie

i
(
ηi(a+a†)−ωit

)
+ h.c.

)
,

(2.1)

where ν is the collective frequency, a† (a) is the creation (annihilation) operator of
the motional mode and h̄ωeg is the energy difference between the qubit states. ηi,
Ωi and ωi are the Lamb-Dicke parameter, Rabi frequency and the laser frequency
for the i-th ion.

The gate operates within the Lamb-Dicke regime, i.e. ηi
√
n+ 1 remains well

below unity while this may still allow n well above unity. Assumptions include free
selection of two ions from the ion string, and η1 = η2 = η, Ω1 = Ω2 = Ω. By choosing
the detunings as described earlier, the only energy conserving transitions occur
between |ggn〉 and |een〉. The effective Rabi frequency Ω̃ governing these transitions,
via intermediate states m, can be derived using second order perturbation theory,
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(
Ω̃

2
)2 =

1

h̄2
|
∑
m

〈een|Hint|m〉〈m|Hint|ggn〉
Eggn − h̄ωi − Em

|2. (2.2)

If we restrict the summation to |egn+ 1〉 and |gen− 1〉, we obtain

Ω̃ = − (Ωη)2

2(ν − δ)
, (2.3)

where δ = ω1 − ωeg represents the detuning of the laser that addresses the first ion.
Notably, Eq. (2.3) is independent of the motional quantum number n due to

interference between the two distinct transition pathways illustrated in Fig. 2.1(b).
The opposite detunings ensure that the denominators in Eq. (2.2) carry opposite
signs, leading to a complete cancellation of the n-dependent terms when subtracted.
As a result, the coherent evolution of the internal states is entirely decoupled from
the vibrational quantum number.

Figure 2.2: Rabi oscillations between |gg〉 and |ee〉, showing the time evolution of ρee,ee
(long dashed line), ρgg,gg (full line) and Im(ρgg,ee) (short dashed line). Initial states are the
internal ground state and a n̄ = 2 coherent vibrational state. Parameters are η = 0.10ν,
δ = 0.90ν and Ω = 0.10ν.

This perturbative analysis is verified numerically based on the exact Hamilto-
nian (2.1). These simulations are performed for various initial vibrational states,
including Fock, coherent, and thermal states, while both ions are initially prepared
in the internal ground state. And they all yield qualitatively consistent results.
Fig. 2.2 gives the computational outcome for a coherent state of vibrational motion.
The figure demonstrates that we have perfect Rabi oscillations between the internal
states |gg〉 and |ee〉. Moreover, the values of the off-diagonal element ρgg,ee indi-
cate a coherent evolution of the internal atomic states that is disentangled from the
vibrational motion throughout the process.

This scheme provides a framework for generating entanglement between the in-
ternal states, completely decoupled from the external vibrational mode. Starting
from an initial state ρ = |gg〉〈gg|⊗ρvib, the radiation fields corresponding to a pulse
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of duration T = π
2Ω̃

can drive the system to ρ = |ψ〉〈ψ| ⊗ ρvib, where |ψ〉 represents
a maximally entangled state 1√

2
(|gg〉 − i|ee〉).

It is also indicated by Eq. (2.3) that ions have no need to remain in a fixed
vibrational state throughout the process. Thus, this scheme has inherent robustness
against interaction with the environment, which is a key advantage of this scheme,
since the heating of the vibrational mode contributes significantly to decoherence.
As a result, the coherent oscillation between |gg〉 and |ee〉 may still exist even when
the vibrational motion undergoes energy exchange with a thermal reservoir.

2.2 The Bichromatic Scheme
In the monochromatic scheme, the laser pulses will induce energy shifts in |egn〉
and |gen〉 that depend on n. These shifts introduce phase factors through time
evolution, which can degrade the coherence between internal states. This issue can
be addressed by a trick resembling photon echoes [19].

Instead of repeatedly inverting the detunings as in the photon echo technique, an
alternative approach is to continuously apply laser fields with both detunings ±δ on
both ions. With two fields of opposite detunings and identical Rabi frequency Ω, two
additional transition pathways contribute alongside those depicted in Fig. 2.1. These
additional paths are identical in effect to the original ones, except for a modification
in Eq. (2.3) by a factor of two. When bichromatic fields are employed, a resonant
transition between |eg〉 and |ge〉 also emerges. The evolution is described by

|gg〉 → cos(Ω̃T
2

)|gg〉+ i sin(Ω̃T
2

)|ee〉

|ee〉 → cos(Ω̃T
2

)|ee〉+ i sin(Ω̃T
2

)|gg〉

|ge〉 → cos(Ω̃T
2

)|ge〉 − i sin(Ω̃T
2

)|eg〉

|eg〉 → cos(Ω̃T
2

)|eg〉 − i sin(Ω̃T
2

)|ge〉.

(2.4)

The robustness of Eq. (2.4) against motional heating is confirmed through nu-
merical simulations incorporating a thermal reservoir.

Notably, in a system with only two trapped ions, the use of bichromatic laser
fields leads to the evolution described by Eq.(2.4) without requiring individual op-
tical addressing. And when the same field simultaneously illuminates multiple ions,
it generates multi-particle entanglement [16].
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Despite resilience to initial motional state, the standard MS gate remains sus-
ceptible to various errors, due to its intrinsic interactions with the environment, as
well as systematic errors arising from imperfect calibration of system parameters.
Thus, a new type of MS gate based on suitably chosen polychromatic driving is
proposed [20, 21]. This multitone generalization of the MS (MTMS) gate not only
protects against infidelity caused by heating of the motional mode and slow fluctu-
ations and mis-sets in the trap frequency, but also relaxes ion cooling requirements.

3.1 Theoretical Proposal

The infidelity of quantum gates originates from the decoherence of the internal
states, which is mainly due to the decoherence of the quantum bus mode during
gate operation in the presence of noise. Since the MS gate ensures complete dis-
entanglement between the internal states and the bus mode in the ideal coherent
evolution, this connection of the decoherence between the internal states and the
bus mode occurs via ion-phonon entanglement in the dissipative dynamics.
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3.1.1 Dissipative Dynamics
The MS Hamiltonian can be written as

H(t) = (Υ(t)a+Υ∗(t)a†)Sx, (3.1)

where Sx =
∑

j σ
(j)
x and Υ(t) = ηΩ exp(iδt) with the detuning δ. The propagator

induced by H(t) is expressed as

UK = exp(−i((f(t)a+ f ∗(t)a†)Sx − g(t)S2
x)), (3.2)

with f(t) =
∫ t

0
dt′Υ(t′) and g(t) = I

[∫ t

0
dt′Υ(t′)f ∗(t′)

]
.

The MS evolution is governed solely by the spin-spin interaction term S2
x when f

vanishes, leading to the dynamics independent of the motional state of the bus mode.
However, incoherent processes during the gate operation still constitute a significant
factor of infidelity. The term (f(t)a + f ∗(t)a†)Sx in equation (3.2) indicates that
the dissipation of the ions’ motion will affect the coherence of the qubits. The
predominant effects—thermalization and dephasing—can be described by a master
equation characterized by the following generator[22]

L[◦] = −i[H(t), ◦] +
∑

j=+,−,d

γjDEj
[◦]. (3.3)

The first term describes unitary dynamics and the second term, the dissipator,
consists of DÔ[◦] = Ô ◦ Ô† − 1

2
{Ô†Ô, ◦} with Lindblad operators E+ = a† and

E− = a for thermalization and Ed = a†a = n̂ for dephasing.
In the time-dependent frame defined by UK(t), the ideal unitary evolution includ-

ing the perfect entangling gate is transformed to the identity. In this interaction
picture, the master equation simplifies, leaving only dissipative dynamics with a
time-dependent dissipator L̃[◦] =

∑
j γjDẼj

[◦] with

Ẽ− = a− if ∗(t)Sx,

Ẽ+ = a† + if(t)Sx,

Ẽd = n̂+ i(f(t)a− f ∗(t)a†)Sx + |f(t)|2S2
x.

(3.4)

These Lindblad operators Ẽj include both qubits and motional operators, which
explicitly reflect the influence of motional decoherence on the qubits throughout the
gate operation.

3.1.2 Polychromatically Driven Gates
Since deviations from ideal gate operations result from ion-phonon entanglement, as
characterized by f(t) in equation (3.2), achieving high gate fidelities may requires
minimizing the deviations of f(t) from 0. The best choice is to minimize 〈|f 2|〉
while enforcing the constraint 〈f〉 = 0, where the expectation operator 〈·〉 =

∫ T

0
dt·

represents time integration over the gate duration T .
To determine optimized control pulses, the laser field is expanded as the trun-
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cated Fourier series

Υp =
m∑
j=1

cjδ exp(ijδt), (3.5)

where cj are dimensionless complex amplitudes and δ is the fundamental frequency.
The requirement for UK(T ) with T = 2π/δ to implement a maximally entangling
gate exp(−iπ8S

2
x) is given by

∑
j |cj|2/j = 1/16, and the overall optimization is

min
cj

(
m∑
j=1

|cj|2

j2

∣∣∣∣ m∑
j=1

cj
j

= 0,
m∑
j=1

|cj|2

j
=

1

16

)
. (3.6)

The optimal coefficient coptj is [23]

coptj =
jb

1− jλ
and b = −1

4

(
m∑
j=1

j

(1− jλ)2

)− 1
2

, (3.7)

where λ is the smallest root of the equation
m∑
j=1

(1− jλ)−1 = 0. (3.8)

As a result, rather than driving each ion sideband with a single field, MTMS
gates apply N fields to drive each sideband at detunings δj = jδ with {j = 1, ..., N}
as illustrated in Fig. 3.1, The strength of each tone is given by coefficients cj, which
can be chosen to be real. The Hamiltonian thus becomes

HMTMS = δηΩSx

N∑
j=1

cj(ae
−ijδt + a†eijδt). (3.9)

Figure 3.1: Energy level diagram showing multitone gate fields detuned from the correct
gate detuning δ by ∆r and ∆b for the red and blue sidebands, respectively.

3.1.3 The Analysis of Infidelity
In practical implementations, a number of factors contribute to deviations from an
idealized MS gate operation, leading to a reduction in gate fidelity. This discussion
focuses on two primary sources of infidelity: phase decoherence induced by heating
of the motional mode during gate operation, and symmetric detuning error results
from an incorrect measurement of trap frequency.
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If the total infidelity is small, the gate fidelity can be approximated as a sum of
independent contributions F = 1−(Eh+E∆+Eoth), where Eh accounts for infidelity
induced by motional heating, E∆ represents the infidelity due to symmetric detuning
error, and Eoth encapsulates all other sources of error, which are not considered
further in this analysis. Since the infidelities are assumed to be small, only leading
terms in the heating rate and detuning error are retained. Then, for the conventional
MS gate, the errors introduced by nonzero heating rate and symmetric detuning
error are given by

Eh =
π ˙̄n

δ
, E∆ =

(
3

4
+ n̄

)
π2

(
∆

δ

)2

, (3.10)

respectively, where ˙̄n is the heating rate and ∆ is the error in gate detuning.
For the MTMS gate, the heating rate in Eh is rescaled by a factor given by

˙̄nMT = 8

 N∑
j=1

c2j
j2

+

(
N∑
j=1

cj
j

)2
 ˙̄n. (3.11)

For N = {1, 2, 3}, ˙̄nMT = {1, 1/3, 1/5.19} × ˙̄n, respectively. The optimization con-
ditions lead to a smaller effective heating rate, meaning that the dephasing is less
sensitive to heating rate.

Furthermore, the infidelity of the optimized MTMS gate due to symmetric de-
tuning error, to leading order in ∆/δ, is expressed as

EMT
∆ ≈ 16π2

(
∆

δ

)2
(

N∑
j=1

c2j
j2

)2

=
1

36
π2

(
∆

δ

)2

≈ 0.028π2 (N = 2)

=
39− 12

√
3

1936
π2

(
∆

δ

)2

≈ 0.0094π2 (N = 3).

(3.12)

Compared with Eq. (3.10), the sensitivity to ∆ is reduced for two- and three-tone
gates. Notably, this infidelity is also independent of the initial motional state dis-
tribution, unlike Eq. (3.10). The reason is that, at this order of ∆/δ, the residual
ion-motional entanglement does not contribute to the infidelity, which is instead
entirely attributed to the erroneous phase accumulation during the gate operation.

3.2 Experimental Demonstration

The above technique is experimentally demonstrated using a pair of 171Yb+ ions [24].
To verify the effectiveness of the MTMS scheme in mitigating the impact of heating,
the heating rate was artificially increased by introducing controlled noise. Fig. 3.2
shows the gate fidelity as a function of three distinct heating rates—the intrinsic
heating rate with no added noise and two artificially enhanced heating rates—for
both single- and two-tone gates.
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Figure 3.2: Infidelities resulting from heating are reduced by moving from a single- to a
two-tone MS gate, shown in red and blue, respectively.

Solid lines are the results of a numerical simulation of the master equation with
appropriate Lindblad operators to model heating effects, and three experimental
points are shown for each type of gate. The dashed line corresponds to a simulation
of a single-tone gate performed at a higher power, defined by the peak Rabi fre-
quency used for the two-tone gate. The comparison shows that two-tone gates still
exhibit lower error due to heating. In the absence of artificially induced heating,
the two-tone gate does not show a fidelity enhancement over the single-tone gate,
as the heating contribution to the overall infidelity is smaller than the experimental
measurement uncertainty.

Figure 3.3: The effect of symmetric detuning error is significantly reduced by moving to
two tones.

To demonstrate the resilience of MTMS gate against symmetric detuning errors,
a symmetric detuning error of up to 0.2δ was added to the nominal zero error
detuning. The results in Fig. 3.3 illustrate the dependence of fidelity on detuning
errors, with solid lines showing the result of numerical simulations. Consistency
between experimental data and simulation confirms the enhanced robustness of the
two-tone gate compared to the conventional single-tone MS gate, demonstrating
effective suppression of both heating-induced errors and detuning-related infidelities.
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The complex interplay of various error mechanisms in entangling gates poses a
significant challenge for developing a robust scheme capable of mitigating multiple
errors simultaneously. Although certain approaches have demonstrated enhanced
resilience against specific noise sources, optimizing for one error mechanism often
comes at the expense of another[17, 25]. These conflicting effects underscore the
need for control protocols that can simultaneously address diverse error sources.

Based on an analysis of the primary error mechanisms in current implementa-
tions, a gate scheme is proposed that integrates multiple strategies to combat various
error sources in trapped-ion QC [26]. This control framework enables high-fidelity
entanglement in hot trapped ion chains with a multi-mode structure, demonstrating
inherent resilience against motional heating as well as increased robustness against
fluctuations in both normal-mode frequencies and qubit frequency.

4.1 Hamiltonian Model

The system consists of N ions and M collective motional modes is described by the
Hamiltonian

H0 =
N∑
j=1

ωj

2
σ(j)
z +

M∑
l=1

νla
†
lal, (4.1)
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where ωj is the resonance frequency for ion j, and νl = κlν is the resonant frequency
for motional mode in terms of the trapping frequency ν.

The interaction with an external light field can excite both internal states and
motional states. The corresponding interaction Hamiltonian takes the form

H(t) =
N∑
j=1

fj(t)σ
(j)
+

M∏
l=1

eiηjl(al+a†l ) + h.c., (4.2)

where σ(j)
+ is the raising operator and fj(t) is the driving functions encapsulating

the generally time-dependent Rabi frequency as well as a time-dependence due to
carrier frequencies of the light field.

Since entanglement is achieved via the exchange of virtual phonons in the mo-
tional mode, the interaction Hamiltonian can be expressed in terms of the operators

Dl,k(η) =
∞∑
n=0

(iη)2n+k a†n+k
l anl

(n+ k)!n!
, Dl,−k(η) = (−1)kD†

l,k(η) (4.3)

for k ≥ 0, that encapsulate all processes involving the creation and annihilation of
k phonons in a given mode l, i.e., they capture the k-th order sideband transitions
of the motional mode l.

By transforming to the interaction picture and applying RWA, the renormalised
driving patterns can be generally parameterized as

f̃j(t) = −i
∑
l

1

ηjl

∑
k

F
(j)
l,k (t)e

−i(kνl+ωj)t, (4.4)

where the exponential factors e−i(kνl+ωj)t capture the time dependence required to
achieve resonance with a specific sideband transition. The factors F (j)

l,k (t) vary slowly
with time compared to νl and account for finite detuning and temporal modulation
that can be used to achieve the desired robustness. The requirement for a coherent
gate indicates that the driving amplitude follows the relation F (j)

l,−k = (−1)k
(
F

(j)
l,k

)∗
.

With such driving patterns, the interaction Hamiltonian reduces to

H(t) =
N∑
j=1

σ(j)
y

∑
l,k>0

F
(j)
l,k (t)

ηjl
Dl,k

∏
l′ 6=l

Dl′,0 + h.c.. (4.5)

4.2 Driving Patterns

By carefully selecting the driving functions F (j)
l,k (t), the ion-field interaction can be

tailored to induce specific entanglement. For the MS gate, entanglement is achieved
by exclusively driving the first sideband of selected motional modes [15, 27], which
requires weak coupling or motional states near ground states as this allows the
displacement operators in Eq. (4.5) to be approximated to the lowest order in η.
Beyond the Lamb-Dicke regime, alternative strategies are required to maintain high-
fidelity gate operations.
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Stronger ion-motion interactions or higher motional excitations necessitate con-
sidering higher-order phonon-exchange processes in Eq. (4.3), which introduces more
complex spin-motion interactions and indirect couplings between driven and spec-
tator modes, requiring control schemes accounting not only for higher-order phonon
processes but also for the phonon exchange processes in the non-addressed vibra-
tional modes. To address these challenges, high-fidelity entangling gates for many-
mode ion chains beyond the Lamb-Dicke regime require a higher-order expansion
of the interaction Hamiltonian H(t), involving selecting a suitable set of driven
vibrational modes L and optimized sideband choices K(L).

In a system with M motional modes, the proposed gate scheme simultaneously
drives all modes (L = M). The first-order sideband (k = 1) of a specific central
mode, typically chosen for its stronger spin-motion coupling, serves as the primary
entangling channel, while second-order sidebands (k = 2) across all modes suppress
unwanted higher-order contributions.

With such choice, the Hamiltonian (4.5) simplifies to

Hc(t) =
N∑
j=1

σ(j)
y

(
F

(j)
1,1 (t)

ηj1
D1,1D1 +

M∑
l=1

F
(j)
l,2 (t)

ηjl
Dl,2Dl

)
+ h.c., (4.6)

where Dl =
∏

l′ 6=l Dl′,0 is the product of phonon-conserving operators in spectator
modes.

From Eq. (4.6), tailored driving functions F (j)
1,1 and F (j)

l,2 can be derived to exactly
capture the driven dynamics up to a particular order of η. While higher-order
solutions are theoretically feasible, the present scheme employs an expansion up to
O(η3), significantly refining first-order approximations while minimizing the number
of required sidebands. The driving functions are given by

F
(1)
1,1 = F

(2)
1,1 = Ω

(
e2iδt − 3

2
e3iδt

)
, (4.7a)

F
(1)
l,2 = sign(η1l) Ω

η̃l
η1l
eiδt, (4.7b)

F
(2)
l,2 = sign(η2l) Ω

η̃l
η2l
eiδt, (4.7c)

where η̃l :=
√
5
2

√
η21l + η22l.

Fig. 4.1 illustrates the driving processes applied to a selected ion pair within an
N -ion chain. According to Eq. (4.7a), both ions experience identical bichromatic
modulation with detunings 2δ and 3δ, targeting the first sideband of the primary mo-
tional mode. This modulation enhances resilience against motional heating while the
specific detuning ratio optimizes the gate speed. In addition, Eqs. (4.7b) and (4.7c)
specify different drivings for each ion in the pair, targeting second-order sidebands
of all motional modes. These tailored drivings suppress unwanted processes that
arise as higher-order contributions to the system’s dynamics and incorporate mode-
dependent amplitudes to compensate for the different coupling strengths across dif-
ferent modes.
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Figure 4.1: Energy level for two ions and two vibrational modes. Solid red (blue) sidebands
represent transitions with a phonon loss (gain) in vibrational mode 1. Dashed red (blue)
sidebands represent the same processes for vibrational mode 2.

4.3 Numerical Results
The proposed control scheme achieves high-fidelity entangling gates for trapped
ions in the presence of noise, multiple collective moitonal modes, and high motional
excitations.

Numerical simulations evaluate the fidelity F as a function of several key param-
eters, including chain size N , initial motional occupations |n〉, motional heating, and
experimental imperfections like frequency errors in the motional modes εν and spin
transitions εω.

(a) (b)

Figure 4.2: Infidelity 1−F of different schemes versus the initial Fock state occupation n

for a 4-qubit (left panel) and 2-qubit (right panel) systems.

As shown in Fig. 4.2(a), the infidelity 1 − F of gates in a 4-ion system with no
dissipation or frequency errors is depicted. The x-axis represents the initial motional
Fock state |n〉⊗4, while the shaded area shows the range of infidelities across all ion
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pairs, with marker points denoting the average value. Different colors distinguish
the present gate (blue), the standard MS gate applied to the center-of-mass (COM)
mode (green), and the MS gate applied to all four motional modes [28] (orange),
while varying marker styles correspond to different coupling strengths Λ.

Notably, under ideal conditions, the present gate consistently surpasses both MS
implementations across all initial states and coupling regimes. This advantage is
particularly pronounced in the weak-coupling regimes (Λ = 0.05, circles), where it
achieves infidelities below 10−4 even at high motional excitations (n = 10).

Fig. 4.2(b) illustrates the performance of the proposed gate under motional heat-
ing in a two-ion system. Unlike the previous scenario, the coupling strength remains
uniform across all vibrational modes and ions, allowing the local drivings to be re-
laxed to global ones. The plot shows the gate infidelity 1−F as a function of the
motional occupation for a fixed coupling strength Λ = 0.1 and varying heating de-
cay rates γ. Crosses represent the standard MS gate applied to the COM mode,
while circles correspond to solutions derived from the parametrization in Eq. (4.7).
The results demonstrate a significant advantage of the proposed strategy over the
MS gate, particularly in low-dissipation environments. The enhanced robustness
achieved through bichromatic driving enables fidelities close to 10−3 for motional
occupations up to n = 10 in low-to-moderate dissipation (γ ≤ 0.01), whereas the
MS gate exhibits an infidelity around 10−1.

Figure 4.3: Combined impact of vibrational and spin frequency errors on the performance
of the present entangling scheme (Robust) compared to the standard MS gate in a two-ion
system.

Fig. 4.3 further examines the combined impact of detuning errors in vibrational
and spin frequencies also under motional heating. Each panel represents the ratio
of infidelities between the MS gate and the proposed robust scheme, IMS/IRobust,
with colors ranging from purple (similar performance) to yellow (significant im-
provement). The panels vary across different initial motional states |n〉 and decay
rates γ, while the x and y axes indicate detuning errors in vibrational εν and spin
frequencies εω, respectively.

For an initial motional ground state, This robust scheme reduces infidelity by
up to two orders of magnitude for small frequency errors, and even under motional
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heating, it consistently outperforms the MS gate. with motional frequency errors
limited to 1.5%, the robust gate achieves fidelities above 99.99%—improving perfor-
mance by at least a factor of five—and maintains high fidelities (above 99%) even
at higher motional excitations (n ∼ 100) and broader error ranges, whereas the MS
gate fails to reach 99% fidelity under any of the studied conditions.
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Resilience of entangling gates against a variety of errors can be achieved through
suitably tailored temporal shapes of the driving fields [20, 21, 26, 29–31], except
for fluctuations of the amplitude of driving field, which is tricky to achieve noise
resilience against. The linear spatial dynamics of trapped ions inherently conflicts
with the requirement for resilience against such amplitude variations. This required
non-linearity can be obtained from the intrinsically non-linear light-matter inter-
action [32] beyond the Lamb-Dicke regime. Alternatively, anharmonicity in the
trapping potential offers a way to achieve the desired robustness without requiring
strong driving to induce significant non-linearity.

Although such anharmonicity will reduce resilience to thermal excitations, this
effect can be mitigated through an appropriate choice of the temporal profile of
the driving fields. This chapter introduces a gate scheme that achieves robustness
against amplitude fluctuations by leveraging a weakly anharmonic trapping poten-
tial [33].

5.1 The Sensitivity to Amplitude in Harmonic Trap

Starting from the MS Hamiltonian of a pair of trapped ions:

H(t) = H0 + ΩR(f(t)a
† + f ∗(t)a)Sx, (5.1)
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where Sx = σ1
x + σ2

x, ΩR is the Rabi frequency, and the function f(t) encapsulates
both the temporal modulation of the driving field carrier frequencies and any pulse-
shaping-induced time dependence.

For an ideal harmonic bus mode, the influence of the non-interacting term H0

reduces to an oscillatory evolution of a and a†. Thus the system Hamiltonian trans-
forming to the interaction picture takes the form H̃(t) = ΩR(f̃(t)a

† + f̃ ∗(t)a)Sx

with a driving function f̃(t) incorporates the intrinsic time evolution of the non-
interacting terms. The resulting gate dynamics corresponds to a phase-space trajec-
tory, which is a closed loop with length proportional to ΩR [15, 27]. The Rabi-angle
ΦR of the effective S2

x-interaction in this dynamics is proportional to the area en-
closed by the loop, exhibiting the quadratic relation [31]

ΦR = Ω2
R Im

∫ T

0

dτ f̃(τ)

∫ τ

0

dτ ′f̃ ∗(τ ′). (5.2)

The dependence of ΦR on the driving protocol factorizes into an amplitude term Ω2
R

and a term determined by the specific temporal structure of the driving field. Since
no choice of modulation f(t) can alter this quadratic dependence on Rabi frequency,
any fluctuation of ΩR will inevitably lead to first-order variations in the Rabi-angle
ΦR.

However, for an anharmonic bus mode, the interplay between the interaction and
the non-interacting terms can break this factorization, allowing for tailored driving
patterns f(t) that achieve resilience against fluctuations in the Rabi frequency ΩR.

While anharmonicity can arise from any higher-order potential terms, the dis-
cussion here focuses on a quartic potential, 1

2
mω2(z2 + z4/ξ2), where ξ represents

the anharmonic length scale. The resulting perturbative correction to the COM
mode’s eigenfrequencies, induced by the anharmonicity, is given by χn(n− 1) with
the phonon number n and the scalar prefactor

χ =
3h̄

4mξ2
. (5.3)

5.2 Numerical Exploration
Fig. 5.1(a) illustrates the infidelity 1−F as a function of the Rabi frequeny ΩR

for several gates. The solid red curve corresponds to a perfectly harmonic system,
where no intrinsic resilience is achieved, leading to a rapid increase in infidelity as ΩR

deviates from its ideal value ΩC . In contrast, the other two curves correspond to an
anharmonic system, demonstrating the improved fidelities achieved by optimizing
the driving patterns for a range of Rabi frequencies spanning [9/10 ΩC , 11/10 ΩC ].
The pulses are optimised under the constraint |f(t)| ≤ 1.

A more quantitative measure of robustness is given by the average infidelity I.
Fig. 5.1(b) and (c) present I as a function of the central Rabi frequency ΩC and the
anharmonicity parameter χ for initial states with 0 phonons and up to 10 phonons,
respectively. As expected, when anharmonicity is negligible, the infidelity remains
relatively high. However, as χ increases, the infidelity decreases, ultimately reaching
the threshold of 10−4 in the strong anharmonicity regime.
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Figure 5.1: (a) Infidelity as a function of Rabi frequency’s variation for the MS gate (solid
red), the anharmonic gate without phonon excitation (dotted blue, for ΩC = ΩG, χ = 2ΩG),
and with 10 phonon excitations (dashed orange, for ΩC = 2.6ΩG, χ = 10ΩG). (b) Infidelity
averaged over a 10% error range of the Rabi frequency for no phonon excitation and (c) up
to 10 phonon excitations, plotted against the anharmonicity and central Rabi frequency.
The optimization process terminates once the infidelity falls below 10−4.

While an ideal Rabi frequency ΩR = ΩG suffices for achieving a fully entangling
gate in the absence of amplitude fluctuations, Fig. 5.1(b) and (c) also indicate that
achieving noise resilience may require slightly larger Rabi frequencies, depending on
the targeted gate fidelity.

5.3 Anharmonic Physics and Optimal Scheme

To gain insight into the mechanism underlying the robustness against fluctuations
in the Rabi frequency ΩR, it is instructive to pursue an approximate treatment valid
in the regime of strong anharmonicity. A gate acting on an initial motional state
within the subspace spanned by the lowest N Fock states requires a tailored driving
profile with components gn(t) close-to-resonant with transitions between adjacent
Fock states. Under such conditions, after transforming into the interaction picture
and applying RWA, the system Hamiltonian takes the form

HI = ΩR

N∑
n=1

√
n
(
gn(t)σ

†
n + g∗n(t)σn

)
Sy, (5.4)

with σn = |n− 1〉〈n|.
If the evolution operator V governing the qubit and motional dynamics satisfies

V (1 ⊗ P ) = exp

(
−iπ

2

N∑
n=1

nZn

)
(1 ⊗ P ), (5.5)

where Zn = 1
4
[σ†

n, σn]S
2
y , then the desired gate for initial motional states in the

subspace P =
∑N−1

n=1 |n〉〈n| is achieved, thereby minimizing the infidelity I.
A practical choice for each of these driving functions gn(t) that ensures the

desired robustness against amplitude noise is a piecewise-constant modulation with
four segments, denoted as gj, defined over time intervals (j−1)T/4 ≤ t < jT/4 [34].
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The explicit form of this modulation is given by

g1 = g∗4 =
2πi√
nΩCT

exp
(
−i3φ

4

)
,

g2 = g∗3 =
2πi√
nΩCT

exp
(
−iφ

4

)
.

(5.6)

Given a central Rabi frequency with the value ΩC , this driving pattern induces
an effective gate operation of the form exp(iφZn) at the final time T . Fluctuations
in ΩR contribute only quadratically to the gate angle, that is, the gate is resilient to
amplitude fluctuations up to second order, leading to robustness in the gate fidelity
up to fourth order.



Conclusions
This work reviews various noise-resilient entangling gate schemes in trapped-ion
quantum computing, focusing on four types of entangling gates: the standard MS
gate, the MTMS gate, generally noise-resilient gates, and gates specifically designed
for robustness against amplitude noise.

The standard MS gate is inherently insensitive to decoherence prior to the gate
operation but remains vulnerable during the gate operation. The MTMS gate mit-
igates errors arising from motional heating and incorrect measurement of trap fre-
quency. The generally noise-resilient entangling gate scheme demonstrates robust-
ness against motional heating, spin and vibrational frequency errors and achieves
high fidelity in hot trapped ion chain with complex multi-mode structure. The
amplitude-noise-resilient gate significantly reduces the sensitivity of the Rabi angle
to Rabi frequency fluctuations, suppressing its impact from first-order to quadratic
dependence.

By systematically categorizing error sources, this work may be helpful for the
development of more refined control strategies for mitigating a broader range of
noise mechanisms, paving the way for high-fidelity entangling operations in large-
scale trapped-ion quantum processors.
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