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1. Description of the problem—2D Ising model 

The Ising model is the simplest model describing phase transitions in magnetic systems. However, 

the interaction between spins in the model can lead to emergent phenomena that are not obvious from 

the properties of individual spins, granting it remarkable properties, with the most intriguing being 

spontaneous symmetry breaking. This model can be extended to study quantum phase transitions, 

dynamic critical behavior, and even complex social and economic phenomena such as wildfires, 

traffic congestion, and opinion dynamics. 

 

Fig.1. The lattice of Ising model. 

The 2D Ising model consists of a lattice of spins, where each spin 𝑠𝑖 takes values of either +1 

(up) or −1 (down). These spins interact with their nearest neighbors and are also influenced by an 

external magnetic field. The Hamiltonian governing the system is given by 

𝐻 = −𝐽 ∑ 𝑠𝑖𝑠𝑗

⟨𝑖,𝑗⟩

− ℎ ∑ 𝑠𝑖

𝑖

 , 

where ⟨𝑖, 𝑗⟩  represents nearest-neighbor spin pairs and 𝐽  is the coupling constant describing the 

strength of interaction between nearest-neighboring spins. If 𝐽 > 0, the system favors ferromagnetic 

alignment (spins tend to be parallel). If 𝐽 < 0, it favors antiferromagnetic alignment (spins tend to 

be antiparallel). ℎ  is the strength of the external magnetic field, which biases the spins toward 

alignment in its direction. 

In this topic “ferromagnetism in the Ising model using the Metropolis algorithm”, we consider 

ℎ = 0 and 𝐽 > 0. In the absence of an external field, Ising model exhibits a phase transition at a 

critical temperature 𝑇𝑐 . For 𝑇 > 𝑇𝑐 , the system is in a disordered phase where spins fluctuate 

randomly. For 𝑇 < 𝑇𝑐, the system has a net magnetization, which is either a predominantly up or 

down orientation. 

When 𝑇  becomes small and cross 𝑇𝑐 , the system experiences a spontaneous 𝑍2  symmetry 

breaking, which corresponds to the emergence of ferromagnetic order (described by magnetization) 

in the Landau paradigm. This classical criticality (characterized by 𝑍2 symmetry breaking) belongs 

to the Ising universality class.  

The order parameter, the magnetization per spin, is defined as 

𝑚 ≡
1

𝑁
∑ 𝑠𝑖

𝑖

 . 



2. Simulation procedure—Markov chain Monte Carlo with Metropolis algorithm 

Step 1:  Define a 20 × 20 lattice of spins 𝑠𝑖 = ±1, start with all spins aligned, i.e., all 𝑠𝑖 =

+1, and define the 𝐽 = 𝑘 = 1 (setting units so that 𝑇 is dimensionless). 

Step 2:  The energy change Δ𝐸 when flipping a single spin 𝑠𝑖 is  

Δ𝐸 = 2𝐽𝑠𝑖 ∑ 𝑠𝑗

𝑛𝑛

 , 

where 𝑛𝑛 means the sum runs over the four nearest neighbors. 

Step 3:  For a given temperature 𝑇, employ the Metropolis algorithm: 

a. Sequentially pick a lattice site (𝑖, 𝑗) (local updates); 

b. Calculate the energy change Δ𝐸 if the spin is flipped; 

c. Accept or reject the flip based on the Metropolis criterion: If Δ𝐸 ≤ 0, accept the flip. 

Otherwise, accept the flip with probability 𝑃 = 𝑒−Δ𝐸/𝑇. Generate a random number 

𝑟 ∈ [0,1]. If 𝑟 < 𝑃, accept the flip; otherwise, reject it; 

d. Repeat for 𝑁 = 20 × 20 times to complete one Monte Carlo step (MCS); 

e. Iterate for a total of 104 MCS to reach equilibrium (a Markov chain). 

Step 4:  After equilibrium is reached, perform 5 × 104  sampling steps. Calculate average 

magnetization per spin 𝑚 =
1

𝑁
| ∑ 𝑠𝑖𝑖 |, average energy per spin 𝐸̅ =

1

𝑁
⟨𝐻⟩, and heat capacity 𝐶 =

⟨𝐸2⟩−⟨𝐸⟩2

𝑇2 . 

Step 5:  Repeat for different temperatures. 

The detailed comments for the code are written directly in the code file. 

 

 

3. Numerical Results 

 

Fig.2. Average magnetization 𝑚 versus 𝑇. 



Critical exponent 𝛼 defined by 𝑚~(𝑇𝑐 − 𝑇)𝛼 can be obtained by fitting ln 𝑚 ~ 𝛼 ln(𝑇𝑐 − 𝑇). 

It can be seen that ferromagnetic order emerges when 𝑻 < 𝑻𝒄 ≈ 𝟐. 𝟑𝑱. 

 

Fig.3. Average energy 𝐸̅ versus 𝑇. 

 

Fig.4. Heat capacity 𝐶 versus 𝑇. 

The more precise value of the critical point can be determined using Fig.4. Here 𝑇𝑐 ≈ 2.27𝐽. 
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